次の方法で共有


爆発

指定された配列またはマップ内の各要素の新しい行を返します。 特に指定しない限り、配列内の要素に既定の列名 col を使用し、マップ内の要素の keyvalue を使用します。

SELECT句ごとに 1 つの分解のみが許可されます。

構文

from pyspark.sql import functions as sf

sf.explode(col)

パラメーター

パラメーター タイプ Description
col pyspark.sql.Column または列名 作業対象の列。

返品ポリシー

pyspark.sql.Column: 配列項目またはマップ キー値ごとに 1 行。

例示

例 1: 配列列の分解

from pyspark.sql import functions as sf
df = spark.sql('SELECT * FROM VALUES (1,ARRAY(1,2,3,NULL)), (2,ARRAY()), (3,NULL) AS t(i,a)')
df.show()
+---+---------------+
|  i|              a|
+---+---------------+
|  1|[1, 2, 3, NULL]|
|  2|             []|
|  3|           NULL|
+---+---------------+
df.select('*', sf.explode('a')).show()
+---+---------------+----+
|  i|              a| col|
+---+---------------+----+
|  1|[1, 2, 3, NULL]|   1|
|  1|[1, 2, 3, NULL]|   2|
|  1|[1, 2, 3, NULL]|   3|
|  1|[1, 2, 3, NULL]|NULL|
+---+---------------+----+

例 2: マップ列の分解

from pyspark.sql import functions as sf
df = spark.sql('SELECT * FROM VALUES (1,MAP(1,2,3,4,5,NULL)), (2,MAP()), (3,NULL) AS t(i,m)')
df.show(truncate=False)
+---+---------------------------+
|i  |m                          |
+---+---------------------------+
|1  |{1 -> 2, 3 -> 4, 5 -> NULL}|
|2  |{}                         |
|3  |NULL                       |
+---+---------------------------+
df.select('*', sf.explode('m')).show(truncate=False)
+---+---------------------------+---+-----+
|i  |m                          |key|value|
+---+---------------------------+---+-----+
|1  |{1 -> 2, 3 -> 4, 5 -> NULL}|1  |2    |
|1  |{1 -> 2, 3 -> 4, 5 -> NULL}|3  |4    |
|1  |{1 -> 2, 3 -> 4, 5 -> NULL}|5  |NULL |
+---+---------------------------+---+-----+

例 3: 複数の配列列を分解する

import pyspark.sql.functions as sf
df = spark.sql('SELECT ARRAY(1,2) AS a1, ARRAY(3,4,5) AS a2')
df.select(
    '*', sf.explode('a1').alias('v1')
).select('*', sf.explode('a2').alias('v2')).show()
+------+---------+---+---+
|    a1|       a2| v1| v2|
+------+---------+---+---+
|[1, 2]|[3, 4, 5]|  1|  3|
|[1, 2]|[3, 4, 5]|  1|  4|
|[1, 2]|[3, 4, 5]|  1|  5|
|[1, 2]|[3, 4, 5]|  2|  3|
|[1, 2]|[3, 4, 5]|  2|  4|
|[1, 2]|[3, 4, 5]|  2|  5|
+------+---------+---+---+

例 4: 構造体列の配列を分解する

import pyspark.sql.functions as sf
df = spark.sql('SELECT ARRAY(NAMED_STRUCT("a",1,"b",2), NAMED_STRUCT("a",3,"b",4)) AS a')
df.select(sf.explode('a').alias("s")).select("s.*").show()
+---+---+
|  a|  b|
+---+---+
|  1|  2|
|  3|  4|
+---+---+