Nota
L'accesso a questa pagina richiede l'autorizzazione. È possibile provare ad accedere o modificare le directory.
L'accesso a questa pagina richiede l'autorizzazione. È possibile provare a modificare le directory.
Restituisce una matrice non ordinata contenente i valori della mappa.
Sintassi
from pyspark.sql import functions as sf
sf.map_values(col)
Parametri
| Parametro | TIPO | Description |
|---|---|---|
col |
pyspark.sql.Column o str |
Nome della colonna o dell'espressione |
Restituzioni
pyspark.sql.Column: valori della mappa come matrice.
Esempi
Esempio 1: Estrazione di valori da una mappa semplice
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, 'a', 2, 'b') as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [a, b]|
+----------------------------------+
Esempio 2: Estrazione di valori da una mappa con valori complessi
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, array('a', 'b'), 2, array('c', 'd')) as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [[a, b], [c, d]]|
+----------------------------------+
Esempio 3: Estrazione di valori da una mappa con valori Null
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, null, 2, 'b') as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [NULL, b]|
+----------------------------------+
Esempio 4: Estrazione di valori da una mappa con valori duplicati
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, 'a', 2, 'a') as data")
df.select(sf.map_values("data")).show()
+----------------+
|map_values(data)|
+----------------+
| [a, a]|
+----------------+
Esempio 5: Estrazione di valori da una mappa vuota
from pyspark.sql import functions as sf
df = spark.sql("SELECT map() as data")
df.select(sf.map_values("data")).show()
+----------------+
|map_values(data)|
+----------------+
| []|
+----------------+