Condividi tramite


array_prepend

Restituisce una matrice contenente l'elemento specificato come primo elemento e il resto degli elementi della matrice originale.

Sintassi

from pyspark.sql import functions as sf

sf.array_prepend(col, value)

Parametri

Parametro TIPO Description
col pyspark.sql.Column o str Nome della colonna contenente la matrice
value Qualunque Valore letterale o espressione Column.

Restituzioni

pyspark.sql.Column: matrice con il valore specificato anteporto.

Esempi

Esempio 1: Anteporre un valore di colonna a una colonna di matrice

from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2="c")])
df.select(sf.array_prepend(df.c1, df.c2)).show()
+---------------------+
|array_prepend(c1, c2)|
+---------------------+
|         [c, b, a, c]|
+---------------------+

Esempio 2: Anteporre un valore numerico a una colonna di matrice

from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_prepend(df.data, 4)).show()
+----------------------+
|array_prepend(data, 4)|
+----------------------+
|          [4, 1, 2, 3]|
+----------------------+

Esempio 3: Prepending a null value to an array column

from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_prepend(df.data, None)).show()
+-------------------------+
|array_prepend(data, NULL)|
+-------------------------+
|          [NULL, 1, 2, 3]|
+-------------------------+

Esempio 4: Prepending a value to a NULL array column

from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
  StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([(None,)], schema=schema)
df.select(sf.array_prepend(df.data, 4)).show()
+----------------------+
|array_prepend(data, 4)|
+----------------------+
|                  NULL|
+----------------------+

Esempio 5: Prepending a value to an empty array

from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
  StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([([],)], schema=schema)
df.select(sf.array_prepend(df.data, 1)).show()
+----------------------+
|array_prepend(data, 1)|
+----------------------+
|                   [1]|
+----------------------+