Bemærk
Adgang til denne side kræver godkendelse. Du kan prøve at logge på eller ændre mapper.
Adgang til denne side kræver godkendelse. Du kan prøve at ændre mapper.
Returns the sum calculated from values of a group and the result is null on overflow.
Syntax
from pyspark.sql import functions as sf
sf.try_sum(col)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column or column name |
Target column to compute on. |
Examples
Example 1: Calculating the sum of values in a column
from pyspark.sql import functions as sf
spark.range(10).select(sf.try_sum("id")).show()
+-----------+
|try_sum(id)|
+-----------+
| 45|
+-----------+
Example 2: Using a plus expression together to calculate the sum
from pyspark.sql import functions as sf
df = spark.createDataFrame([(1, 2), (3, 4)], ["A", "B"])
df.select(sf.try_sum(sf.col("A") + sf.col("B"))).show()
+----------------+
|try_sum((A + B))|
+----------------+
| 10|
+----------------+
Example 3: Calculating the summation of ages with None
import pyspark.sql.functions as sf
df = spark.createDataFrame([(1982, None), (1990, 2), (2000, 4)], ["birth", "age"])
df.select(sf.try_sum("age")).show()
+------------+
|try_sum(age)|
+------------+
| 6|
+------------+