Bemærk
Adgang til denne side kræver godkendelse. Du kan prøve at logge på eller ændre mapper.
Adgang til denne side kræver godkendelse. Du kan prøve at ændre mapper.
Returns the sum of all values in the expression.
Syntax
from pyspark.sql import functions as sf
sf.sum(col)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column or column name |
Target column to compute on. |
Returns
pyspark.sql.Column: the column for computed results.
Examples
Example 1: Calculating the sum of values in a column
from pyspark.sql import functions as sf
df = spark.range(10)
df.select(sf.sum(df["id"])).show()
+-------+
|sum(id)|
+-------+
| 45|
+-------+
Example 2: Using a plus expression together to calculate the sum
from pyspark.sql import functions as sf
df = spark.createDataFrame([(1, 2), (3, 4)], ["A", "B"])
df.select(sf.sum(sf.col("A") + sf.col("B"))).show()
+------------+
|sum((A + B))|
+------------+
| 10|
+------------+
Example 3: Calculating the summation of ages with None
import pyspark.sql.functions as sf
df = spark.createDataFrame([(1982, None), (1990, 2), (2000, 4)], ["birth", "age"])
df.select(sf.sum("age")).show()
+--------+
|sum(age)|
+--------+
| 6|
+--------+