Bemærk
Adgang til denne side kræver godkendelse. Du kan prøve at logge på eller ændre mapper.
Adgang til denne side kræver godkendelse. Du kan prøve at ændre mapper.
Returns an unordered array of all entries in the given map.
Syntax
from pyspark.sql import functions as sf
sf.map_entries(col)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column or str |
Name of column or expression |
Returns
pyspark.sql.Column: An array of key value pairs as a struct type
Examples
Example 1: Extracting entries from a simple map
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, 'a', 2, 'b') as data")
df.select(sf.sort_array(sf.map_entries("data"))).show()
+-----------------------------------+
|sort_array(map_entries(data), true)|
+-----------------------------------+
| [{1, a}, {2, b}]|
+-----------------------------------+
Example 2: Extracting entries from a map with complex keys and values
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(array(1, 2), array('a', 'b'), "
"array(3, 4), array('c', 'd')) as data")
df.select(sf.sort_array(sf.map_entries("data"))).show(truncate=False)
+------------------------------------+
|sort_array(map_entries(data), true) |
+------------------------------------+
|[{[1, 2], [a, b]}, {[3, 4], [c, d]}]|
+------------------------------------+
Example 3: Extracting entries from an empty map
from pyspark.sql import functions as sf
df = spark.sql("SELECT map() as data")
df.select(sf.map_entries("data")).show()
+-----------------+
|map_entries(data)|
+-----------------+
| []|
+-----------------+