Bemærk
Adgang til denne side kræver godkendelse. Du kan prøve at logge på eller ændre mapper.
Adgang til denne side kræver godkendelse. Du kan prøve at ændre mapper.
Computes the exponential of the given value. Supports Spark Connect.
For the corresponding Databricks SQL function, see exp function.
Syntax
from pyspark.databricks.sql import functions as dbf
dbf.exp(col=<col>)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column or column name |
column to calculate exponential for. |
Returns
pyspark.sql.Column: exponential of the given value.
Examples
from pyspark.databricks.sql import functions as dbf
df = spark.sql("SELECT id AS value FROM RANGE(5)")
df.select("*", dbf.exp(df.value)).show() # doctest: +SKIP
+-----+------------------+
|value| EXP(value)|
+-----+------------------+
| 0| 1.0|
| 1|2.7182818284590...|
| 2| 7.38905609893...|
| 3|20.085536923187...|
| 4|54.598150033144...|
+-----+------------------+
from pyspark.databricks.sql import functions as dbf
spark.sql(
"SELECT * FROM VALUES (FLOAT('NAN')), (NULL) AS TAB(value)"
).select("*", dbf.exp("value")).show()
+-----+----------+
|value|EXP(value)|
+-----+----------+
| NaN| NaN|
| NULL| NULL|
+-----+----------+